147 research outputs found

    Embedding based on function approximation for large scale image search

    Full text link
    The objective of this paper is to design an embedding method that maps local features describing an image (e.g. SIFT) to a higher dimensional representation useful for the image retrieval problem. First, motivated by the relationship between the linear approximation of a nonlinear function in high dimensional space and the stateof-the-art feature representation used in image retrieval, i.e., VLAD, we propose a new approach for the approximation. The embedded vectors resulted by the function approximation process are then aggregated to form a single representation for image retrieval. Second, in order to make the proposed embedding method applicable to large scale problem, we further derive its fast version in which the embedded vectors can be efficiently computed, i.e., in the closed-form. We compare the proposed embedding methods with the state of the art in the context of image search under various settings: when the images are represented by medium length vectors, short vectors, or binary vectors. The experimental results show that the proposed embedding methods outperform existing the state of the art on the standard public image retrieval benchmarks.Comment: Accepted to TPAMI 2017. The implementation and precomputed features of the proposed F-FAemb are released at the following link: http://tinyurl.com/F-FAem

    Supervised Hashing with End-to-End Binary Deep Neural Network

    Full text link
    Image hashing is a popular technique applied to large scale content-based visual retrieval due to its compact and efficient binary codes. Our work proposes a new end-to-end deep network architecture for supervised hashing which directly learns binary codes from input images and maintains good properties over binary codes such as similarity preservation, independence, and balancing. Furthermore, we also propose a new learning scheme that can cope with the binary constrained loss function. The proposed algorithm not only is scalable for learning over large-scale datasets but also outperforms state-of-the-art supervised hashing methods, which are illustrated throughout extensive experiments from various image retrieval benchmarks.Comment: Accepted to IEEE ICIP 201

    Egocentric Activity Recognition with Multimodal Fisher Vector

    Full text link
    With the increasing availability of wearable devices, research on egocentric activity recognition has received much attention recently. In this paper, we build a Multimodal Egocentric Activity dataset which includes egocentric videos and sensor data of 20 fine-grained and diverse activity categories. We present a novel strategy to extract temporal trajectory-like features from sensor data. We propose to apply the Fisher Kernel framework to fuse video and temporal enhanced sensor features. Experiment results show that with careful design of feature extraction and fusion algorithm, sensor data can enhance information-rich video data. We make publicly available the Multimodal Egocentric Activity dataset to facilitate future research.Comment: 5 pages, 4 figures, ICASSP 2016 accepte
    • …
    corecore